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Some remarks on scatter plots generation procedures for facility layout

J. GROBELNY²

Scatter plots of facilities on the plane are derived from a heuristic procedure
proposed by Drezner. Features of this approach have been investigated. It is
shown that scatter plots generated by the èigenvectors method’ could di� er in
quality. It is shown that this quality depends on the input data structure. By the
comparison of eigenvector results with those obtained by a special algorithm
proposed in this work, general conditions are determined for rational applications
of the Drezner approach.

1. Introduction

In papers by Drezner (1980, 1987), procedures were proposed for the generation
of reasonable facility layouts in the form of scatter plots. In the analytical approach
of Drezner (1980), scattered plots are a result of the ® rst phase only of the algorithm
but, in practice, as noted in his second paper (Drezner 1987), they proved to be very
useful, e.g. in the work of architects. Drawings of facilities scattered on a plane may
be a useful benchmark for them in urban planning, locating industrial plants, etc.
The starting point for construction of scattered layouts is the formulation of the
objective function as:

min f cijdij dij , 1

where cij 0 denotes the linkage between facilities ij, while dij denotes the distance
between them. The heuristic proposed by Drezner (1987) is very e� ective and is
based on the properties of eigenvectors and the eigenvalues of matrices. Namely,
if in problem (1) dij is substituted by d2

ij, which Drezner considers to be ìntuitively
reasonable’, we have:

min ff cijd
2
i, j d2

ij . 2

Problem (2) has its optimal solution as a straight line. The coordinates of the sol-
ution (the same for x and y) are the successive elements of the eigenvector connected
with the second lowest eigenvalue of the matrix S in which sij = cij for i= j and
sii = j cij for all i. A good solution on a plane may be obtained as the coordinates,
y, of the eigenvector elements, connected with the third lowest eigenvalue of matrix
S, since these are the coordinates of the best solution, which is orthogonal to the x
coordinates vector. In accordance with this idea, the generating algorithm is extre-
mely simple. Having the set of links cij, it is enough to:
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(a) construct the matrix S;
(b) calculate the eigenvalues and eigenvectors;
(c) select two vectors connected with the second and third lowest eigenvalues,

treating them as the coordinates x and y of the solution on a plane.

Since Drezner veri® ed the scattered solutions only by mapping them into the con-
strained regular patterns and by comparing them with the ones obtained in the well
known c̀lassic’ method (on the same constrained, regular patterns), it is appropriate
to investigate how e� ective is the proposed p̀ure’ heuristic. Particularly interesting is
the relation of the objective function f (problem 1) and � (problem 2) since the
proposed treatment of changing d into d2 is controversial and, in some sense, the
opposite of the well known linearization methods of operational research.

A motivation for this research was a chance assessment of an application of
Drezner’s algorithm to the solution of a c̀orridor design problem’. The problem
was formulated as seeking the optimum shape (on a plane) of a corridor (or even a
building) where material ¯ ow (of the intensity cij = 1) occurs only between successive
rooms located along a corridor, i.e. from 1 to 2, from 2 to 3, etc. The main conclu-
sion drawn in that work was that the corridors (and, consequently, the buildings)
should be optimally built in a U-shape, yet it is unnecessary to know the details of
scattered plots theory to infer that the conclusion is senseless. However, direct appli-
cation of the algorithm described above generates such a solution. An example for
the data given in ® rst column of table 1 is presented in ® gure 1, in which `U’ is
rotated 90ë degrees left. It is evident that, in accordance with general layout theory
(i.e. minimization of the function cij dij), it should be precisely indi� erent what
shape the building will have for this c̀orridor problem’ de® ned in table 1, as the
operating costs of the system of ® gure 1 depend only on the distances of individual
points.

This is not the case if a criterion is the function (1). A U-shape solution here is, in
general, `not good’ , as simply b̀ending’ the arm of the U outwards increases the
denominator of the f function (the numerator being unchanged) and, thus, the
objective function value is decreased. The formulation of the problem in using
objective function (1) is, therefore doubtful, and even more doubtful is the solution
obtained with eigenvectors (you could imagine towns of the optimum U-shape with
buildings of such shapes).

The example presented is admittedly only loosely connected with the above-
mentioned controversial treatments of substitution of the distance by its square,
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Figure 1. Scatter plot of c̀orridor problem’ from table 1 obtained by Drezner’s approach.
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but it suggests the necessity of accurate analysis and major care in the application of
the approach under discussion.

To assess Drezner’s proposition more accurately, a simple algorithm was con-
structed, in order to obtain a reasonable solution of variable parameters and objec-
tive function values, since Drezner’s algorithm gives only one solution for any given
link matrix S.

2. `Virtual force’ algorithm

The solution generator operating principles were based on the ideas behind
DISCON, as described in the paper by Drezner (1980). This approach was adapted
to maximize ¯ exibility of the new algorithm and the interactive opportunities of its
computer implementation. The analytical approach was abandoned and replaced by
the heuristic simulation of physical analogy. In the DIS phase of the DISCON
algorithm, elastic disks interconnected with springs located in the system centre
èxploded’ due to the elasticity forces outside and next, in the concentration phase,
were pulled by the springs connected to the centre, producing a cluster wherein they
stayed close to one another, strongly interconnected. The analogy proposed here is
somewhat simpler but a little more abstract. Each facility is represented by a material
point (of no dimension). In order to scatter the facilities randomly on a plane, all
facilities could be initially located at the area centre at the beginning, and next, for
each facility, a direction and distance on which each facility is to be moved would be
chosen randomly. Such scattering corresponds to a possible (random) layout of non-
interconnected facilities on a plane. Physically, it can be obtained in such a way that
on each point there acts a pushing out force acting from the centre along the chosen
direction. The force decreases when moving away from the centre and, at a point in
distance of a pre-selected value, decreases to zero. This force may be called a s̀cat-
tering’ one. The notion v̀irtual’ is used because of the di� culties in ® nding a real,
physical realization of the complete idea. In particular, such di� culties can be
imagined if it is assumed now that, along the path taken by each facility to the
chosen location after a given period, there acts on the facility an attractive force
proportional to the interconnections cij from each facility (interconnected with the
latter). The forces may be di� erent for each interconnected pair. In addition, each
facility may have a de® ned radius from which it ceases to be attracted. The force
between the facilities acts inverse proportionally to the scattering force (the farther
the interconnected facilities, the stronger they are attracted). Facility travel from the
centre to the chosen locations may be simulated on a computer by dividing the total
distance into stages where each facility will be moved only a s̀mall step’ in the
direction of the resultant of the virtual forces from other facilities and the scattering
force (from the centre of gravity of the complete system). This idea is realized by the
algorithm pseudocode given below.

1 INPUT DATA

nÐ number of facilities;
De® ne facilities links matrix L = [lij];
De® ne the layout area (0,0,xmax, ymax);
C= (xc,yc) Ð layout area centre coordinates (xc= xmax/2; yc= ymax/2);
De® ne variables
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� b̀u� er zone’ size r(i); (radii of zones where no virtual force from other facilities
acts as a percentage of a layout area diagonal size);

� coe� cient e Ð the value proportional to which each facility will be moved from the
layout area centre before forces from other facilities will be t̀urned on’.

� coe� cient b Ð the value proportional to which each facility will be moved in
reaction to the virtual force in one simulation step. Physically it shows the distance
(in the layout area units) of the facility movement when the virtual force value
from other facilities is equal to 1. (The reader familiar with the computer simula-
tion will notice that b could be interpreted simply as the duration time of a
separate simulation step.)

� The above ( e and b ) factors play a key role in the time of the solution completion
and stability. In this simple algorithm version they must be determined in some
experimental trials.

2 CHOOSING STARTING CONDITIONS

For i= 1 to n do

begin

choose randomly xi [0,xmax], yi [0,ymax];
store P(i) = [xi,yi];
calculate D(i) = SQR((xc-xi)2 + (yc-yi) 2);
move facility i from point C in direction P(i) by e D(i);

end;

2 LAYING OUT

Repeat

Calculate centre of gravity W = (xw,yw) of the system and move each facility
of
D = C W so that the system has its gravity centre at C;
For i = 1 to n do

begin
determine the resultant vector of v̀irtual force’ VF acting
from other facilities, assuming that the force from each
pair is directly proportional to the interconnection and
distance of the facilities and acts only up to the distance
equal to the b̀u� er zone’ sum;
calculate distance D(ci) between P(i) and C. If the distance
is lower than D(i) (randomly chosen in the ® rst step) than
add the VFC vector of the force acting in the direction
from C to P(i), in a way proportional to 1/D(ci), to the
virtual force resultant vector (VF= VF+ VFC);
move facility i in the direction of the resultant vector of
value b VF ;

end;
calculate value of function f;
calculate value of function � ;

Until the system is stabilized or the preset iteration number is attained.
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Concatenation of virtual force vectors occurs in the normal way, i.e. such as for the
physical force case; the vector lengths only are calculated in a speci® c way, needing
some comment. To make the operation of the algorithm independent of the geo-
metric size (scale) of the layout area, a rule was adapted so that the virtual force
action zone for each facility pair i, j is such that, in a distance that is very high
compared with the size of the bu� er zone sum, the force is maximal (tends to 1),
whereas, within the zones it is equal to 0, and this relation is maintained in each
layout plan scale. Such assumptions are realized by the following formula for virtual
force vector length calculation outside the bu� er zones:

VF ij 1 r i r j /D ij , 3

where D(ij) denotes the ij facility distance and r(i) denotes the ith facility bu� er zone
radius.

One can notice that (3) describes a kind of a simple ǹormalized spring’ attracting
a given facility pair.

In the case of the scattering force, the similar formula acts, on the basis of the
assumption, so that a facility is moved from the system outwards with the maximum
force near the centre and the minimum one near the chosen distance value. An
appropriate formula is, here, as follows:

VFC i 1 D ci /D i . 4

Of course the relationship works only for D(ci) < = D(i). An implementation of the
idea made in Pascal shows additionally, graphically, the course of the objective
function changes for f and � . Display hard-copies are presented in ® gures 2, 3 and
4. The facilities are denoted with a cross symbol and numbers.

3. Experiments with Drezner’s examples

The ® rst step of the research work performed was based on examples from
Drezner’s paper. Table 1 shows the interconnections for three examples described
as Drezner1, 2 and 3. It was assumed that each link had force 1. For each example,
the solution was found ® rst with the algorithm based upon eigenvectors. The sol-
utions are given in graphic form in the paper by Drezner (1987) but the values of the
objective function (1) are not given. It can be easily noticed that the presented virtual
force procedure is very ¯ exible since many parameters may by changed within it. In a
series of pilot experiments it became clear that, from the viewpoint of the drawn
target (validation of f and � function relations), the greatest in¯ uence upon the
variability in the generated solution is due to the relation of the bu� er zone size
(r(i)) with respect to the layout area size. Therefore, a percentage share index of
bu� er zone sizes for two facilities up to the length of the layout zone area diagonal
(R) was introduced into the algorithm. It was assumed, then that each facility has the
same bu� er zone. For all experiments, the coe� cients e and b were determined
empirically so that stable solutions are obtained in a relatively short time.
Although this was not too precise a requirement, it meant that the f function
stable state was obtained after not more then 100 steps. Both coe� cients were
preset at the same level equal to 10. It should be emphasized, however, that these
are not universal values since they express unit movement in a speci® c layout area
scale.

Since, even in the case of determination of all input variables, the algorithm
produces a di� erent solution due to the choice made in the ® rst step, ten experiments
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were run for six selected values of the index R for each of the three Drezner’s
examples.

The mean results of studies are listed in table 2. An example plot for the
`Drezner1’ case is depicted in ® gure 5. In each case qualitatively similar relations

Scatter plots generation procedures for facility layout 1125

Figure 2. The screen copy of the `Virtual Force’ algorithm implementation. Exemplary
result for the Drezner1 case (R= 5% ). See the f and � functions’ dynamic plots in the
upper left part of the screen.

R 3 5 8 10 13 15
f (mean) 4, 90 5, 61 6, 14 6, 55 6, 81 6, 98

Drezner1 � (mean) 3, 06 2, 71 2, 44 2, 54 2, 55 2, 59
opt f (Drezner’s algorithm) 5.97{opt � (Drezner’s algorithm) 2.14

R 3 5 8 10 13 15
f (mean) 11, 13, 11, 18 11, 23 11, 29 11, 41 11, 52

Drezner2 � (mean) 4, 67 4, 63 4, 62 4, 63 4, 69 4, 76
opt f (Drezner’s algorithm) 11.21{opt � (Drezner’s algorithm) 4.49

R 3 5 8 10 13 15
f (mean) 5, 45 6, 34 6, 94 7, 83 8, 13 8, 44

Drezner3 � (mean) 3, 77 3, 54 3, 33 3, 49 3, 61 3, 81
opt f (Drezner’s algorithm) 7.49{opt � (Drezner’s algorithm) 3.61

Table 2. Mean results of experiments with Drezner’s examples and the `Virtual Force’
algorithm.
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Figure 3. The screen copy for sample results of the Drezner2 case (R= 5% ).

Figure 4. Sample results of the Drezner3 case (R= 8% ).



were obtained. First, in each case the presented algorithm quite easily obtains better
solutions under criterion (1) than the eigenvector method. Examples of such sol-
utions are presented in ® gures 2, 3 and 4. These better solutions occur for relatively
small bu� er zones (the area diagonal in the experiments was kept constant).
However, the most interesting result is the relationship between f and � , as shown
in the plots in ® gure 6. It appears that the heuristic proposed here operates well only
for smaller R values but in the neighbourhood of the best solutions (in the sense of f),
the two criteria act in opposition! The above seems to be a basic theoretical weakness
of Drezner’s approach since it is directed on minimization of the � objective func-
tion. On the other hand it seems also to be a main reason for the v̀irtual force’
algorithm observed e� ciency.

It should be also noted that while the relationship between f and � is very clear in
the Drezner1 and Drezner3 examples (table 1), it is considerably weaker in the
Drezner2 example (the � scale is elongated in the plot of ® gure 6(b)). Although
this example, as Drezner notes, is arti® cially devised, the basic di� erence with respect
to the other two is the stronger and very uniform interconnections of facilities
(column Drezner2 in table 1). In this example, the � functions change minimally
with changing index R. The changes are statistically insigni® cant on the level
p= 0.05 in contrast with the very signi® cant relations in the Drezner1 and
Drezner3 examples ( p< 0.001). In this case, the solutions with the Virtual Force
algorithm (VF) and eigenvector methods are visually very similar.

This observation suggested a series of pilot tests, whereupon the problem based
on the Drezner1 example was modi® ed by randomly adding new connections (ori-
ginally the system has 30 linksÐ see table 1). In ® gure 7 the � -f relation is listed for
successive links numbers (N). The relations were obtained for mean values from the
® ve best results in a series of ten trials for each example and it can be seen how the

Scatter plots generation procedures for facility layout 1127

Figure 5. Relationship of f and � versus bu� er zone dimension (R) for the Drezner1 data.
Opt f and opt � represent the respective Drezner’s algorithm results.



apparent inconsistency in the f and � criteria assessments fails when the connection
number increases.

An interesting question arising in this situation involves the limit above which the
inconsistency of assessments of both criteria does not occur, since this is essentially a
question of the validity of Drezner’s heuristics (in the step of exchanging f and � ). In
the tested examples it appeared that this limit is close to the number expressing the
theoretical maximum number of neighbours allowed for a given set of facilities being
laid out, given by Moore (1980). This number, implied by Euler’s equation, de® nes
the maximum number of edges (E) that may be realized in a form of a planar graph
at a given number of vertices (V):

1128 J. Grobelny

Figure 6. Relationship between f and � in the experiments for the Drezner1 Drezner3 data
(a-c).



Emax 3V 6 5

since the planar graph models the adjacency of facilities on a plane. For the examples
investigated here, Emax = 3 19 6= 51. From ® gure 7(a) ± (d) it can be seen that,
above this limit, both functions assess various solutions consistently. Obviously, this
empirical observation remains as a conjecture needing further validation.

4. Experiments with randomly generated problems

To ® nd some more characteristics of the observed relationships the second set of
experiments was undertaken. The main goal of these experiments was to ® nd if the
above relationships are independent of the number of the facilities being laid out and
also of the structure of links. As it was pointed out in Drezner’s work, two of the
studied examples were designed in a special wayÐ knowing the optimal layout. Here,
a new set of interrelationships was created àlmost randomly’. The only restriction
was to avoid unconnected facilities in the S matrix because such a situation leads to
arti® cially good criteria values as a result of moving the unconnected element far
from the group (see equations (1) and (2)). First, three di� erent links matrices S were
created with 10, 20 and 30 elements respectively. These basic matrices have 80% of
Emax interconnections de® ned. They are shown in table 1 as 1̀0± 80’ , ` 20± 80’ and
3̀0± 80’ columns respectively. Adding (randomly) new links, a set of respective Emax

problems was created, subtracting the appropriate link amounts to 60% of the Emax

problems being de® ned.

Scatter plots generation procedures for facility layout 1129

Figure 7. Results of the experiments based on the Drezner1 data in which ten new links were
added in case (a), 20 links in case (b), 30 in case (c) and 40 in case (d).



All nine problems were ® rst solved using the eigenvector method. After that, the
Virtual Force algorithm was applied ten times for each of six levels of the R value
(3± 15% of the layout area diagonal) in each of the problems de® ned. Best values of f
and the appropriate � were then chosen and standardized by dividing them by f-opt
and � -opt (results of the eigenvectors’ method) respectively. The relationship
between these standardized f and � was studied carefully for each problem. It was
found that it is similar to that derived in the ® rst experimental series (® gure 7)
although in the 30-element problem the inconsistency between f and � exists even
for a 100% Emax case.

Figure 8 shows standardized best results (f /f-opt values) versus levels of R (bu� er
zones) for all problems with respect to the Emax level. These are also established in
table 3. One can notice than a value lower then 1 in these ® gures means that f

1130 J. Grobelny

Figure 8. Standardized best results ( f/f-opt) obtained by the VF algorithm for nine ran-
domly generated problems versus bu� er zones (R) and Emax percentage.



(obtained by the VF algorithm) was better than f-opt (obtained by eigenvectors).
This is also in accordance with the previous results.

The relationship that is the general conclusion from the above research is that the
level of standardized f depends (almost proportionally) on the level of R when
applying the VF algorithm.

It is clear from ® gure 8 that the level of standardized f depends in some way also
on the level of E and the number of facilities being laid out. The 60% level of Emax

seems to be the best for the e� ciency of the proposed VF algorithmÐ it gives the best
results for 3% R and 60% Emax for all cases. Relationships between 80 and 100%
levels are not so clear. Perhaps also other parameters play a role for the obtained
results.

To clarify and verify the above observations statistically, some additional experi-
ments were designed to determine: (a) whether the number of elements in¯ uences
Drezner’s method results, (b) which way the number of links (measured as a percen-
tage of Emax) in¯ uences results and (c) whether the results depend on the links
structure.

To answer the above questions, additional problems of 15 and 25 elements were
de® ned in a similar way to the method described above (table 1). Two di� erent
structures were proposed ( àlmost randomly’ as before) for each problem of the
same size and the same number of links (percentage of Emax ). The input S matrix
for each case was characterized by its diagonal elements variance and range (max sii

min sii). The best results of the VF algorithm in the form of standardized f were
established together with those obtained before for 10, 20 and 30 element problems.
Matrix S characteristics were also computed for the previous problems. All results
are put together in table 4. Statistical analysis was used to determine the basic
dependencies between problem characteristics and obtained results. Analysis of vari-
ance has shown that the number of links (% of Emax) has the most signi® cant
in¯ uence on the results (p< 0.001) while the number of elements is less important
(p= 0.057). However, there is no signi® cant di� erence (according to the Student t-
test) between two structures of the same size and linked pairs of the last series
number, but they were generated in a random way and so structure parameters
were not controlled (excluding the number of links of course).

Figure 9 shows plots of the main relationships for the obtained results. The two
analysed factors (problem size and Emax percentage) do not explain the results com-
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30 object problem² 20 object problem² 10 object problem²
Percentage of

R 60% 80% 100% 60% 80% 100% 60% 80% 100%

3 0, 87 0, 97 1, 06 0, 88 0, 89 1, 01 0, 75 0, 80 0, 97
5 0, 92 1, 20 1, 07 0, 95 0, 99 1, 04 0, 80 0, 94 0, 99
8 1, 03 1, 34 1, 07 1, 10 1, 08 1, 10 0, 93 1, 08 0, 99

10 1, 06 1, 36 1, 12 1, 17 1, 17 1, 12 0, 93 1, 14 1, 00
13 1, 09 1, 39 1, 15 1, 22 1, 25 1, 13 1, 03 1, 16 1, 01
15 1, 13 1, 44 1, 20 1, 24 1, 26 1, 14 1, 09 1, 22 1, 04

f opt 3, 57 6, 05 10, 18 5, 97 9, 13 15, 19 15, 6 23, 14 36, 01

² % of Emax.

Table 3. Best f objective function results for each R level obtained by the `Virtual Force’
algorithm with randomly generated problems.



pletely. The correlation analysis of the matrix S diagonal elements variance and
ranges with experiments results has shown that there is the most signi® cant relation-
ship between ranges of the S matrix diagonal elements and the standardized f
(r= 0.5). Figure 10(a) shows this relationship. The regression line is also plotted.
R2 shows that more then 25% of the changes in f is explained by ranges of the S
matrix diagonal elements. Combining the two main results one can say that, gen-
erally, Drezner’s approach gives better results (it is harder to improve them using the
VF algorithm, and probably other algorithms) for problems which are large (taking
into account the number of facilities) and have many interconnections between
facilities that are not uniformly distributed.

5. Scattered plots regularity

The simple visual analysis of some results of the eigenvector approach in the form
of scattered plots leads to the conclusion that facilities can be distributed more or less
regularly in a layout region. Because the layout regularity in some practical cases
could be even the objective, some analysis of this problem was performed in the last
series of experiments.

A simple regularity index was ® rst constructed and implemented on the com-
puter.

Each plot was ® rst closed in a minimal rectangular window with sides parallel to
the X± Y axes. This window was divided into equally sized cells. The number of cells
was, for each case, de® ned as a minimal number K such that K is greater than or
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Problem S-matrix Best (minimal) Index of
size % of Emax Variance diagonal range f/f opt regularity

60 1, 11 3 0, 74 0, 7
10 80 3, 33 6 0, 8 0, 5{100 0, 84 3 0, 97 0, 8

60 0, 78 2 0, 72 0, 67
60b 1, 78 4 0, 79 0, 67

20 80 1, 12 4 0, 76 0, 67
80b 2, 98 6 1, 10 0, 73

100 1, 31 4 1, 02 0, 87{100b 0, 6 2 1, 04 0, 67

60 1, 85 4 0, 88 0, 4
20 80 1, 92 4 0, 89 0, 35{100 2, 69 5 1, 01 0, 6

60 1, 17 4 0, 89 0, 4
60b 1, 37 5 0, 99 0, 44

20 80 2, 3 6 0, 82 0, 32
80b 1, 14 4 0, 97 0, 6

100 3, 21 7 1, 17 0, 28{100b 4, 67 9 1, 12 0, 52

60 1, 67 5 0, 87 0, 67
30 80 2, 1 6 0, 97 0, 33{100 3, 76 5 1, 03 0, 47

Table 4. Best results and parameters analysed in the second series of experiments with ran-
domly generated problems.



equal to the number of facilities N and K= A A, where A is a number of zones
generating cells on Xand Y. The index of regularity was de® ned as a number of cells
containing any facility of the total number of cells (K). To make the index compar-
able it was standardized by multiplying it by a factor K/N. In this way the maximal
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Figure 9. The 3D plot of the main relationship obtained in the second series of experiments.

Figure 10. Relationships between the S matrix diagonal elements’ ranges and the results of
experiments: (a) standardized f, (b) index of regularity obtained by Drezner’s method.



value of the index was equal to 1 when each facility is located in a separate cell. Such
a de® ned index was calculated for all eigenvalue method results and is presented in
the last column of table 4. The analysis of correlation has shown that the regularity
of scatter plots depends only slightly on the regularity of links in the matrix S,
measured by the variance (r= 0.38) or the diagonal values range (r= 0.46).
This relationship is shown in ® gure 10(b). It indicates rather clearly that a possibility
of the scatter plots’ regularity shaping is rather limited since only one scatter plot is
generated for a given S matrix, while on the other hand a matrix S is given then
shaped by a designer. Performance of the VF algorithm is better in this matter. The
average regularity index of plots generated by this method strongly depends on the
percentage of Emax and the R parameter (bu� er zones radius) Figure 11 illustrates
this relationship for the data obtained in a special series of experiments in which the
highest regularity index was taken from ® ve trials of each of 10, 20 and 30 element
problems, with 5, 10 and 15% levels of R. The analysis of variance has shown that
the presented relationships are signi® cant (p< 0.001 for both independent vari-
ables).

6. Summary

The results presented here give some evidence that the method of seeking scat-
tered layouts of facilities on a plane proposed by Drezner (1987) must be applied
with care. Generally, the quality of results (measured by the objective function f)
depends on the data structure in this approach. Best results can be expected for
problems with a great number of links. It seems that Emax can be a good orientation
point in this matter. If the number of interconnections in a given problem is close to
this level one can expect a good resolution from the eigenvector approach.
Additionally, the size and structure parameters of the input matrix (S) should be
taken into account. A great number of facilities being laid out and signi® cant di� er-
ences in links between facilities (diagonal elements of the matrix S) increase the
probability of getting a good result.

The Virtual Force algorithm proposed in this work, as a tool of the Drezner
approach evaluation, has shown its good performance in cases opposite from those
described above. It gives better results especially for a smaller number of links
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Figure 11. Index of regularity for the VF algorithm (average maximal results for di� erent
problem sizes) versus R and Emax percentage.



(E< Emax). To obtain the best results one should know that, in the proposed
approach, the R parameter (the bu� er zones size) must be set to a value smaller
than 10% of the layout region diagonal length. It is only below this limit that the VF
algorithm gives solutions better then Drezner’s approach. It is very likely that the
general reason for the above is the observed inconsistency between assessments of f
and � functions for resolutions obtained for such small R settings in executed experi-
ments (eigenvectors are directed on the optimization of the � function).

The VF algorithm enables the designer to take into account sizes of facilities by
setting the level of R. This factor in¯ uences regularities of generated plots very
signi® cantly. There is no such possibility in Drezner’s approach.
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