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Facilities layout problems are discussed briefly. Some ‘classical’ approaches to the solution of
these problems are described. The fuzzy approach is presented. This approach is based on
Zadeh’s possibility theory and bLukasiewicz’s multivalued implication formula. The heuristic
algorithm for solving the fuzzy facilities layout problem is proposed and exemplified by a
simple numerical example.
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1. Introduction

The facilities layout problem (FLP) has been the subject of interest of
specialists in Management Science [3] and the ergonomics field [1] since the early
sixties.

Quite little attention in the hitherto known investigations has been paid to the
problems of gathering the input data for algorithms. Seeberger and Wierwille [9]
developed a statistical method of determining the ‘traffic intensity’ degree
between instruments (link values) at the work places for ergonomic needs,
whereas as early as in 1966 Gavett and Plyter [2] noticed the fact that obtaining
reliable data for the FLP problem is often very hard.

In the present work a simple formal formulation is being proposed for the
situation where (for various reasons) it is impossible to obtain accurate numerical
estimations of the ‘link values’ (and significance, convenience etc.) of the facilities
and location places, but it is possible to gain approximated estimations repre-
sented by means of fuzzy sets. A heuristic algorithm has been suggested to solve
FLP under the conditions of non-precisely formulated data. The algorithm is
based on the modification of a widely known approach HC-66 (Hillier and
Connors [5]). Applying the estimates similarly to the natural language the
suggested approach may be one more step in the direction of layout algorithms
regarding the human designer intuition as postulated by Bonney and Williams [1].
This direction seems right especially in the light of investigation results obtained
by Scriabin and Vergin [8] who pointed that man and his intuition are more
advantageous than some heuristic algorithms serving to solve layout problems.
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2. Facilities layout problem

For the convenience of the reader we present here a description of the facilities
layout problem (FLP). We will characterize some of the most often used notions
and definitions of variables used in two main application areas of FLP -
ergonomics and production engineering.

The FLP can be defined as the following task:

Locate n facilities at n fixed locations (of the set of m locations, m = n) in such
a way to maximize (or minimize) a certain objective criterion function, with the
constraint that one and only one facility may be assigned to each location.

In the field of ergonomic design, controls and displays constituting a given
workstation are considered as ‘facilities’ [1]. Production engineers usually define
facilities as indivisible workstations, machines, pieces of equipment or separate
departments.

Location places (in both considered areas) can be physically determined (e.g.
by technology) or one can assume that the whole space being at one’s disposal
can be divided into elementary subspaces called locations.

There are two distinct types of criteria that can be used to optimize the facilities
layout: first order criteria and second order criteria [9]. First order criteria
describe the relationship between each given facility and its location. Second
order criteria, on the other hand, describe the relationships that exist among pairs
of facilities and ‘distances’ between the places of their locations.

Installation costs are an example of the first order criterion used in plant layout
problems [5]. Optimization in this case is to find such an arrangement of facilities
which minimizes the sum of installation costs over all facilities.

The minimization of the sum of products of the ‘importance degree’ times
‘distance from designed panel center’ is an example of the first order criterion
used in an ergonomic panel design. The ‘importance’, is usually defined by an
expert as a numerical weight which represents the expert’s preference based on
the role played by a given facility in a designed workstation. In the more general
workstation design process the ‘distance from the panel center’ is replaced by a
‘convenience degree’ of a given location, usually determined by an expert
(ergonomist) on the basis of empirical knowledge of psychophysical abilities of
man (e.g. field of view features, range of limbs manipulation).

A total cost of materials and goods transportation between workstations is a
typical second order criterion used in production engineering problems. For one
pair of fixed facilites it is generally expressed as a product of the ‘traffic intensity
degree’ and the ‘distance’ between their locations [2]. The ‘traffic intensity’ (a
kind of facilities dependence measure) is most often the rate at which materials
(or goods) will be transferred between a given pair of facilities, and the “distance’
is the cost (or index of cost) of having to transfer a unit of material between the
pair of locations. This cost measure may literally be a linear distance, but not
necessarily so. Because of the complexity of interrelationships in actual produc-
tion systems the ‘traffic intensity degree’ as well as the ‘distance’ have to be
aggregate values. Experts’ opinions are in this case often the only source of
gathering data for designers as there are difficulties with ‘physical measurement’
and changes of data in the course of time. To unify in some way the ‘experts
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based’ approach special REL-charts were proposed [7]. An expert marks his
opinion on each facility pair dependence (called ‘closeness’) in the six step
closeness priority standard utilizing the vowel letters (A — absolutely necessary,
E - especially important, I — important, O — ordinary closeness, U — unimportant
and X - not desirable). In computational algorithms letters are replaced by
numerical weights.

The second order criterion for ergonomical purposes can be stated similarly but
the terms used above need to be redefined. The ‘traffic intensity degree’ —
traditionally called ‘link value’ —is most often defined as a ‘“‘measure of the
desirability of having two instruments located near to each other to facilitate
operation of the system™ [2]. The ‘distance’ is usually physical, linear distance
which the hands (or eyes) must travel to ‘manipulate’ two instruments. The
formal statistical method, based on observations of frequency of use for
determining link values was proposed by Seeberger and Wierwille [9]. Limitations
of this approach (costs and similarity of designed and examined workstations)
imply the use of imprecise data based on experts’ opinions [1].

A logical, practical example of the FLP is the case of plant layout where there
are a number of machines, pieces of equipment or departments that must be
assigned to a set of locations. The locations are distance oriented and fixed in a
space. There is a rate of flow of materials (parts, people) between each pair of
facilities. The costs of installation for each facility in each location are
determined.

One of the most frequent formal descriptions of the facilities layout problem
(FLP) to be found for this case is the proposition by Hillier and Connors [5] to
formulate the problem in the convention of the quadratic assignment problem
(QAP). It may be presented as follows: Let

n = number of laid-out (indivisible) facilities and locations.

c; = cost (per time unit) of the assignment of facility ‘i’ to place /’,

d;, = unitary cost of the ‘passage’ from location point ‘j’ to location point ‘r’,

fix = number of passages between ‘i’ and ‘k” facilities

_{ﬁkd,-, ifiFkorj#r,
Gk =le, ifi=kandj=r,

_ {1 if the facility ‘i’ is assigned to place f’,

Y10 otherwise.

Now the problem of facilities layout planning may be presented as

Minimize 12 Y, > > GjeXiXer (1)
i=1j=1k=1r=1
subject to
Zx=1, j=1,2,...,n, )
i=1
Py, B=1.2. ;.0 (3)

1

7
x;=0o0rl, i=1,2,...,n, j=12,...,n (4)
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In such a model it is especially difficult to determine c;; costs and fx-number as
precisely specified data.

3. The fuzzy approach

In the face of the situation, particularly of frequent difficulties in precise
determination of data concerning facilities interrelationships as well as not too
precise approximate algorithms of the facilities layout, it seems interesting to
alternately formulate the FLP in fuzzy terms and manipulate these categories in
accordance with the basic principles of the fuzzy sets theory. Such an approach
will make it possible to formulate the facilities layout problem in a way closer to
the human designer intuition than in the case of any other formal ‘classical’
conception. Intuitions of the known approaches to the solving of the problem
under discussion as well as to the evaluation of given layout can be limited to the
following:

The facilities forming a set should be laid out so that: (a) facilities of strong
mutual interrelationship, generally called ‘link values’ (understood as the flow of
materials, energy, information, etc.) are situated close to each other, and (b)
facilities in a sense ‘important’ should be located at in a sense ‘convenient’
locations. Case (b) occurs mainly in ergonomic problems and ‘importance’ is most
often defined as an aggregate regarding the significance of the facility for the
processes taking place as a whole at the workplace being designed and its
frequency of use (Seeberger and Wierwille [9]), whereas ‘convenience’ of the
location is most often interpreted as a general degree of ease of use in relation to
the person operating a given facility at a given place. In the (1)—(4) model the
case (b) can be interpreted as follows:

(b") A given facility should be located at a place where its installation costs are
lowest (more precisely — an annual equivalent of these costs).

A bit more ‘formally’, procedures (a), (b) and (b’) can be rewritten as:

(A) IFTHE LINK VALUE (of two given facilities) = ‘VERY BIG’ THEN THE

DISTANCE (between their location places) = ‘VERY SMALL . (5)
(B)  IF THE IMPORTANCE DEGREE (of a given device) = ‘VERY BIG’ THEN

THE CONVENIENCE DEGREE (of its location place) = ‘VERY BIG’. (6)
(B') Lavourt cost (of a given device at a given place) = ‘MINIMAL’. N

The above statements can be regarded as ‘reference propositions’ or criteria
according to which the given solution of the FLP can be evaluated. Of course, the
expressions in quotes (in (5)-(7)) may be more complicated in specially
formulated problems but most important is that they can be interpreted in general
in the categories of fuzzy sets in appropriately defined spaces.

Let L; be a fuzzy set in the space X, determining the link value of ‘" and j’
facilities of the membership function L;(x), whereas Dy, is a fuzzy set in the
space Y, determining the distance between ‘.’ and ‘r’ places of the membership
function Dy, (y). The spaces X and Y can be defined, taking into account the way
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of data gathering generally as (a) spaces of discourse of physical dimension
(operationally defined), for example material flows in kg/h (as link values) or cost
per transferred unit in $ (as a ‘distance’), (b) artificial space of linguistic terms
representation — for example the interval of the real line to represent linguistic
expressions of the type ‘BIG’, ‘sMALL’, ‘MEDIUM’ etc. for the level of ‘link values’.

With these assumptions it is possible, making use of the methodology of Zadeh
[12], to calculate the truth value of L; in reference to the proposition — criterion
from the expression (A) (LINK VALUE = ‘VERY BIG’) as:

pi” =POSS(L;; is v.BIG) = sup {L,(x) A v.BIG(x)} (8)
xeX

where v.BIG(x) is the membership function of the expression VERY BIG in the space
X and ‘A’ the minimum operation. By analogy,

g = POSS(D,, is v.sMaLL) = sup {D,,(y) A V.SMALL(Y)} (9)
yeY

where v.smaLL(y) is the membership function of the expression ‘VERY SMALL’ in
the space Y and ¢{*’ the truth value of D,, in relation to the proposition
DISTANCE = ‘VERY SMALL’. Here, we want to point out that the way of constructing
fuzzy sets representing linguistic expressions in (8) and (9), i.e. ‘reference
propositions’, and also the question of a linguistically formulated input data
(L, Dy,) representation in appropriate spaces, seems to be essential. Some
rationales for these problems were formulated by Zadeh [12]. Some attention to
many practical problems of that kind was paid in works of Freksa [4] and Yager
[11]. Because, after all, problems under discussion are complex, and ‘separate’
questions arise, we shall not pay more attention to them, all the more since the
course of our concepts is ‘independent’ of the questions mentioned above. The
estimation of the truth value of the implication L;= Dy, (in relation to the
criterion (A)) may be performed according to the multi-modal logical formula by
Lukasiewicz (Tsukamoto [10]) as:

O =min{1, 1 - p{» + g} (10)

where O} can be interpreted as a satisfaction degree of the criterion (A) if the
facilities */” and ‘j° are laid out at ‘k” and ‘r’ places respectively. Formula (10)
describes the truth value in a generalized implication. Let a denote the truth
value of an expression A and b the truth value of an expression B. Let I(a, b)
denote the truth value of implication 1IF ‘A’ THEN ‘B’; then one can prove that
I(a, b) defined as in (10) (i.e. I(a, b)=min{l, 1 —a +b}) has the following
‘reasonable’ properties:

1°  Ia1)=1,
2 I0,a)=1,
3  I(l,a)=a, . (11)

4° I(a, b)=1(a, c) iff b=c,
5° I(a, b)=1(c, b) iff a<c.
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Of course another function fulfilling the above can replace Lukasiewicz’s formula
in (10).

A similar approach can be proposed for the estimation of a given facility-
location system according to the criterion (B).

Let I, denoting an importance degree of the ‘i’ facility, be a fuzzy set in Z of
the membership function ,(z), and C,, denoting the convenience degree of place
k, be a set in V of the membership function Cc(v); then

p$? =POSS(/; is V.BIG) = sup {I(z) A vBIG(2)} (12)

where p$ is the truth value of I in relation to the proposition criterion (B) (i.e.
‘VERY BIG’), whereas v.BIG(z) is the membership function of the fuzzy set
representing the expression VERY BIG in the space Z and

g% =POSS(Cy is v.BIG) = sup {Ci(v) A vBIG(V)} (13)

where g% denotes the truth value of Cy in relation to the expression VERY BIG’,
and VERY BIG(v) is the membership function of the fuzzy set corresponding to the
notion ‘VERY BIG’ in the space V.’ o

When QF denotes the satisfaction degree of the criterion (B) through the
location of the i-th facility at the k-th place, one can determine

Qf = min{1, 1 - p¥ +q§} (14)
and in an alternative case of the criterion (B'),
Q¥ = POSS(K,; is MINIMAL) = sup {Kx(c) A MINI(c) } (15)
ceC

where K, is the cost of the installation of facility ‘i’ at place, ‘k’, and K, (c) and
miNi(c) are the membership functions of the fuzzy sets representing installation
cost K, and ‘minimal’ cost in the space C, respectively.

Formula (10) enables us to calculate the truth value of the criterion (A) being
satisfied for the pair of i-j facilities layed out at k-r places. Assuming, as in the
(1)-(4) model, that the number of location places equals that of the layed out
facilities and amounts to n, a general evaluation of a given layout system
p=(py,...,Pp,), in which p, is the number of locations to which the i-th facility
is assigned, in relation to the criterion (A) can be formulated as follows:

2 n—1 n
> 2 o (16)

2
n"—hn =1 j=i+1

O(p) =
Similarly, for the (B) and (B') criteria,
1 n
Q(p)=, 2, OF (17)

! We want to point out that functions of the type v.BIG(x) can be treated as standards (Zadch [12))
or can be defined individually because of many reasons. But either in the first or the second case,
generally the spaces X, Y, Z and V are different. The spaces Z and V can be determined in the ways
discussed in relation to X and Y.
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Estimations O(p) and Q(p) represent ‘the mean truth value’ per one pair of the
facilities and one facility, respectively; it results from satisfying the requirements,
formulated in (A) and (B) (or (B')) criteria, in a given layout characterized by
permutation p.

A general estimation (in respect of both criteria jointly) must be a result of the
aggregation of O and Q estimates. It seems that in this case (of operating the
truth value estimates) there is much to be said for performing this by means of
the function of t-norm properties, i.e. the function 7:[0, 1]*— [0, 1] for which:

1° T(a,1)=a,

2° T(a, b)=T(b, a),

3 T(a,b)=T(c,d) iffa=cand b=d,
with an additional condition

3" T(a,b)>T(a,d)iff b>d and a >0,
which correspond to the intuition that the increase of truth in one component
makes a general estimate increase.

The operation of multiplication is the one to satisfy these properties. It can be
generally written

G(p)=T(O(p), Q(p)) (18)

where T denotes a function satisfying the properties 1°-3°.

One can easily notice that in this conception the formulated criteria of the
optimum layout of the facilities in a given space enable the estimation not only in
‘pure’ fuzzy problems but also in ‘mixed ones’ (e.g. the criterion of distance being
determined as a range or fuzzy set and the distance between places (D,,) being
accurately measured). A particular case of the proposed conception may be the
formulation of estimates and criteria as intervals. For example, criterion (A) can
be represented as:

IF LINK VALUE = ‘A’ THEN THE DISTANCE = ‘B’ (19)

where ‘A’ and ‘B’ denote ‘sharply’ determined numerical intervals in correspond-
ing spaces, then
; . 0 fL,NA=0
N =POSS(L, is A) = L; A :{ Y i
o (Lyis A)=sup {LiE) A =1y 51, naxs,
and
0 ifD,NB=4,

(kr)= 1 — =
al) =POSS(Dy,is B) =sup D (1)BOY) = || 00

Of course the L;(x) and A(x) as well as D,,(y) and B(y) are fuzzy sets of the
membership functions equal to 1 for a given interval and 0 outside it. The truth
value of satisfying criterion (19) by a given layout system in this situation is
calculated according to the classical implication truth value.

The hitherto presented discussion enables the evaluation of any facilities layout
system and thus makes it possible to choose the best one out of many assessed
ones. The problem discussed can be now formulated as the problem of discrete
optimization (max G(p), where P is the set of all permutations of numbers
1,2,...,n). Certainly for the problem dimensions n >10 the review of all
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possible variants of the layout is ineffective even for a fast computer. Foulds [3],
presenting the results of the work by Sahni and Gonzales, states that an effective,
analytic algorithm for the problem (1)—(4) of the dimensions n > 10 is unlikely to
be found (it is an NP-complete problem). Hence the attempts to find approximate
methods are of great importance. Many of these heuristic methods are discussed
by Foulds [3] and Bonney and Williams [1]. In the following section the heuristic
algorithm, based on the HC-66 algorithm concept (Hillier and Connors [5]) is
presented for solving the ‘fuzzy’ task formulated above.

This concept can be characterized briefly as follows. Based on data concerning
‘link values’, distances and installation costs (a;i, in model (1)-(4)), lower
bounds on the criterion-function (1) increase are determined for all pairs ‘not
assigned-facility’ — ‘free location’.

In this way the matrix of assignments is constructed. This matrix is the basis for
an assignment of facility to the location which gives in perspective a minimal
increase of the criterion function. To achieve this the VAM method is used. This
procedure is repeated until the moment in which n — 1 facilitles are located. In
the algorithm proposed below the course of this idea was used. Because, after all,
variables and criteria in our approach are completely different from ‘classical’
ones, the way of construction of the ‘matrix of assignments’ was a different one
too. A special ‘maximal truth value’ theorem had to be formulated and proved.
The algorithm includes the case where (A)-(B) criteria occur (the joint
occurrence of the (A)—(B’) criteria is a specific case of the (A)—(B) situation).

4. Heuristic algorithm

Assuming that in the case of the (A)—(B) criteria being applied the following
parameters are given (in the form of fuzzy sets):

— facilities interrelationship degrees (link values) — matrix L = [L;],x,

- distances between places — matrix D = [Dy, ], xn,

— significance (importance) degrees of individual facilities — vector I = [[],,x1,

— convenience degrees of each place — vector C = [C,],x1,
and assuming that the number of facilities n equals that of possible places (which
does not change the generality degree of considerations) one should follow the
following algorithm:

1° Make the matrix L' with elements L}, = p{"’ (formula (8)) and the matrix D’
with elements Dj,=gq{*” (formula (9)) for i=1,...,n, k=1,...,n, j=
1,...,n, r=1,...,n, assuming, for all i=j and k=r, that L;=D;, =1
Substitute RL':=L" and RD':=D".

2° Make the vector I’ with elements I/ = p§’ (formula (12)) and vector C’ with
elements C; = g% (formula (13)) (for k=i=1, ..., n) and then form the matrix
F with elements F;, = O, (formula (14)) for all i’ and ‘k’".

3° Sort out the elements in columns of matrices RL’ and RD' in a decreasing
order denoting the obtained matrices by L” and D".

4° Determine the matrix of assignments A (‘truth losses’) according to the
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following ‘step criterion function’:

Ay=1-(Fu- 2(‘1 + b)) (20)
where
% {(1-Lii+ Dy} A1}, (21)
n—|#|
n_lgl 2 Q=L+ Djnl) (22)

in which |#| is the cardinality of a set of laid out elements, ¥ a set of indices of
laid out elements, p(i) the index of location place of facility ‘7". (For the ‘first
pass’ (|#| =0 and ¥ =0) a is assumed to be 0.)

5° Choose on the basis of the matrix A the assignment of facility ‘4’ to place ‘I’
so that it will provide the minimum ‘truth loss’, applying the VAM method (see
Appendix); substitute £:=F U {k}.

6° Delete the rows and the columns in the matrices RL’, RD' corresponding to
the chosen facility and its location place.

7° If one facility has been left out, locate it at a remaining place; otherwise
realize the algorithm once more, beginning with step 3°.

In order to illustrate the algorithm a simple numerical example is presented in
the following section.

It can be noticed that the concept of the algorithm is based generally on the
branch and bound method. The basic difference in the presented proposition is
the lack of ‘returns’ to a once rejected branch of the ‘solution tree’, and only one
part of the ‘step criterion function’ (20) is estimated by finding its upper bound
(22). The matrix A,,, based on which assignments in the proposed algorithm are
performed, may be interpreted as a matrix of ‘truth-value’ losses, associated with
the satisfaction of the (A) and (B) criteria in the case of selecting a given layout.
The smallest loss of truth value is achieved for the layout providing the maximum
value for the expression in brackets in (20). The part denoted by a (21) enables
one to determine the potential increase of the truth value per each new link of
already laid out facilities, resulting from the location of facility ‘k” at place I’ (or
the mean truth value of the facilities k having already been laid out).

The part given by ‘b’ (formula (22)) is an estimate of the upper bound of the
perspective truth-value increase of the A criterion satisfaction, resulting from the
location of facility ‘k’ at the place ‘/’. One can formally rewrite

1 n—|#|
b=max| 'S (1~ RLi, + RD)) A 1}] 23)
where F is the set of all permutations of indices of not laid out facilities, p a
permutation of indices of not laid out facilities, and p; the j-th element of
permutation p.

It is possible to rewrite formula (23) in the form ‘6’ of formula (21) due to the
application of ‘the maximum truth-value theorem’ presented together with its
proof in Appendix 2.
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5. Simple numerical example

To make the course of the presented approach more understandable let us
consider a simple problem of an ergonomical design. There are 3 instruments
which ought to be located at 3 free places at a given workstation. All data for the
optimization are given as linguistic categories formulated by expert ergonomists.
The experts arbitrarily constructed representations of 5 expressions used in their
opinions and decided that criteria of the form (A) and (B) should be applied.
Definitions of the expressions used are shown in Table 1.

The matrix of link values (facilities 1, 2, 3) is as follows:

— V.SMALL  BIG
L =] V.SMALL — SMALL
BIG SMALL —

The matrix of ‘distances’ (places 1, 2, 3) is defined in the following way:

— V.SMALL MEDIUM
D =| V.SMALL - V.SMALL
MEDIUM  V.SMALL —

The vectors of facility importance and convenience degrees of individual location
places are given respectively by

I=(VBIG SMALL MEDIUM), C = (BIG V.BIG MEDIUM).

In the first step of the proposed algorithm one should create the matrices L’ and
D'. for example,

Li,=p{'"®=POSS(L,, is V.BIG) = sup {v.sMALL(x) A V.BIG(X)}

=sup{0.0, 0.0, 0.2, 0.0, 0.0} =0.2.

Calculating in this way one obtains (adding ‘1’ on diagonals)

1.0 0.2 0.9 1.0 1.0 0.8
L'=|102 1.0 03], D'=110 1.0 1.0
0.9 03 1.0 0.8 1.0 1.0

We also make RL':=L" and RD':=D".

Table 1. Definitions of the applied linguistic expressions

Representation space of the
expressions X =Y =Z=V

Denotations 1 2 3 4 5
VERY SMALL(X) 1.0 0.8 0.2 0.0 0.0
SMALL(x) 0.9 1.0 0.8 0.3 0.0
MEDIUM(x) 0.3 0.8 1.0 0.8 0.3
BIG(x) 0.0 0.3 0.8 1.0 0.9

VERY BIG(x) 0.0 0.0 0.2 0.8 1.0
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Putting into practice step 2° of the algorithm, making use of the formulae (12)
and (13), as above, and Table 1, one obtains

I'=(1.0 03 08), C'=(09 10 0.38).

(For example: element [3=p$ =POSS(L, is V.BIG)=sup,.z {SMALL(z) A
v.BIG(z)} = sup{0.0, 0.0, 0.2, 0.3, 0.0} =0.3.)

On the gound of formula (14), based on the elements of these vectors the
following matrix F can be built:

09 1.0 0.8
F=|10 1.0 10
1.0 1.0 1.0

(For example: element F; = Q7 =min{1, 1 — p{" + 45’} =min{1, 1 - 1+0.80} =
0.8.)

Passing to step 3° of the algorithm the matrices L” and D" should be created.
Sorting out (in a descending order) the columns of the matrices RL" and RD’, we
obtain

1.0 1.0 1.0 1.0 1.0 1.0
L"=| 09 03 09 and D"=| 10 1.0 10
02 02 03 0.8 1.0 0.8

On the basis of the foregoing calculations it is possible to determine the matrix of
assignments (truth losses) A. For example element A,, is calculated in the
following way (see (20)):

Ap=1—-(09-3-31+1+1))=1-0.45=0.55.
Calculating the other elements in a similar way one obtains

1 2 3

1055 05 0.5
A=2105 05 05
3\0.5 0.5 0.5

Applying the VAM method, assuming in this situation the assignment according
to the order of rows and columns, we locate facility 1 at place 2. In accordance
with step 6° of the algorithm, deleting the columns and rows in the matrices RL'
and RD’, corresponding to the layout, we obtain

2 3 1 3
2{1.0 0.3 1[1.0 0.8
RL' = RD' = .
3(0.3 1.0)’ 3(0.8 1.0)
(Notice that in the formula (21) L' and D’ denote the output, not reduced,

matrices.)
Since 2 facilities are still left we pass to step 3° of the algorithm and create the
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matrices L” and D” through sorting out:

2 3 1 3
- (1.0 1.0)) om (1.0 1.0)‘
0.3 03 0.8 0.8
We determine a new matrix of the assignments A. For example,
Ap=1-1-3-1-{1-02+1) A1} +3(1+1)=0.0.
Calculating all elements in this way we obtain

1 3
4=l 0.0 0.0
3\0.05 0.0}
Based on the VAM method we select the layout 2— 1. Since only one element
has been left out we locate it at the remaining free place i.e. 3— 3.

We obtain the layout system presented in the Figure 1.

It is very easy to prove that this solution is optimum. Applying the formulae
(16) and (17) to the system we obtain O(p)=1 and Q(p)=1 and hence
Glp)=1,p=(21,3).

It is also very easily noticed that it is not the only solution than can be obtained
by applying the proposed algorithm.

It is possible to use our ‘maximal mean truth value’ theorem to find the upper
bound on the O(p) values on the basis of L and D matrices. The matrix F allows
one to easily find the upper bound on Q(p). These two values can be used to test
the optimality of a given solution in a general case.

Of course the test of the algorithm properties requires extended studies. From
preliminary investigations by the author, performed by means of a 8-bit

microcomputer, it resulted that (without a large scope of the problem) the
proposed approach is very promising. (For 10 tested problems with casually

= V. SMALL
LA
I2=SMALL I1=V.BIG
Cq= BIG C2=V.BIG
LOCATION { LOCATION 2

I3=MED|UM

®

C4= MEDIUM

LOCATION 3

Fig. 1. The obtained layout with values of the linguistic variables.



Facility layout problems 187

defined data and n =3 or 4 all solutions were optimal.) Systematic studies on the
algorithm properties will be continued. The results will be presented in a separate

paper.
6. Concluding remarks

The proposed approach widens the range of possibilities of applying the
optimization rules used in the FLP in the case of non-precisely or ‘fuzzy’
formulated data.

The analysis of works dealing with the FLP in a ‘classical’ way implies that the
situations which are not too precisely defined for various reasons) occur very often
in practice (Gavett and Plyter 2], Bonney and Williams [1]). Certainly, it is
necessary to investigate the properties of the proposed algorithm in detail. The
investigation of the relations between traditional concepts and the fuzzy ap-
proach, as well as of the effects of the way of defining the fuzzy sets applied in the
estimation of the task, individual parameters on the solution quality seem
particularly interesting. The correlation of the proposed approach with the
concepts resulting from investigations on expert systems — particularly in the
range of the ways of formulation of unprecisely defianed data on the basis of
expert group opinion — is thought to be profitable (Yager, [11], Freksa [4]).

Appendix 1

The course of calculations in the VAM method (Lis and Santarek [6]):
(a) The differences between the two smallest elements are calculated for each
row and each column of the matrix:

Ri=A,, —A i=1,2,...,n,

Lp2 ipy»

where A; ,,= A, ,, and these are the two smallest elements in row i;

C‘,1:J=1"'1i2,p_1":l P=1,2,...,n,

il,p»
where A;; ,= A, , and these are the two smallest elements in column p.

(b) A row (or a column) is chosen to which the greatest of the calculated
differences corresponds; it is the row i, when

R,= max (R, C,},
i,p=1 n

iLp=1,...,

C,= max {R;, C,}.
i,p=1 n

(c) In the chosen row i, (or column p,) of the matrix A the minimum element
is sought. This is an element from the column p, when

Aip.= min {A, .},
p=1,..n
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or an element of the row i, when

Aik-Pk = rj?ln . {Afnpk}‘

The facility corresponding to row i, is located at place p;. In the proposed
method, at each step the matrix A lessens and consists of different elements —
thus for a given matrix A the calculation cycle finishes after the point (c) has
been performed.

Appendix 2
Theorem (‘of the maximum mean truth’). Let py, p, - .., pn denote the set of
‘truth values’ of the statements A,, A, ..., A, and p,=p;=---=p,,
41, Gw, - - - » 4 denote the set of ‘truth values’ of the statements B,, B,, . . ., B, and
gG1=q,="=q, with

pi, 4;€[0,1].

Let A; 5>Bj denote a generalized implication and t; = min(1, 1 — p; + q;) the truth
value of this implication (Tsukamoto [10]). Then the following is true:

1 n 1 n
max (_ 2 ti,n.) I Z Liis
neP \M =1 R =1
where P is the set of all permutations of the natural numbers 1,2, . . ., n and w; the
i-th element of permutation 7.

That means that the greatest ‘mean truth value’ in the set of implications
(A, = B, )/, is obtained when the statements of A and B types are ordered
respectively in a nonincreasing way according to the estimates of the truth of p; and

g i.e. Ay>B,. A,>B,,...,A,> B,

Proof. Given the sequences of statements of A and B types ordered so that
p1=p,=---=p, and, for a given pair j, k, g;=q, if < k, let us consider the
sequence of statements B’ defined as

B! =B; fori#j, k and B;=B,, B,=B,

The difference between the ‘mean truth’ of both systems {A,= B, }/-, and
{A;=> B }- (v and ' denote permutations of B and B’ sequences respec-
tively) can be expressed as

| ;
——"-’; [min(1, 1 —p; +g;) + min(1, 1 — p, + qr)

—min(1,1-p; +g) —min(1, 1 —p, + q,)].
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One should prove that the expression in square brackets is =0. In order to do this
let us separately consider the sums ; + £, = §; and 1 + ;= §..

Notice that
SP=2 if ;= p; and g, = py, (AD)
SP=2—-pi+q if g;=p; and g, <px, (42)
SP=2-p;+gq, if g;<p; and g, = p;, (A3)
SO =2—(pe+p)+(a+q) ifg<pandq.<p, (B4}
whereas
=2 if g« = p; and g; = py, (AT')
SP=2-pi+g, if g;<py and g, =p,, (A2
SP=2-p, +aq, if ¢;= px and g, < p;, (&)
S =2-pi+p+qu+q ifq<pandg=<p. (A4)

So the difference S; — S, can be presented in 16 different ways according to the

conditions (1)—(4'). Let us assume that j < k and hence

Pi = Pk
and

q; = qx;
then

$-85=1° sP-s{P=2-2=0,

or 2° S{V—8%=p, —q;=0, p,=gq; and p, <g,

orR 3 S-S5 =p,—p, =0, p;=p,

orR 4° SV -89 =p, +p;— (g +q,)=0,
Px=qx=q; =p;

or 5° §SP-8SV=g,—p,=0, p,=q, and p, < q,

orR 6 SP-SP=¢g,-q,=0, g,<g,and q, = gq,

or 7° S —8P=p,—p.=0, p;=p,

orR 8 S-S =p,—q;=0, p;=q;andp;<g,

orR 9° 8" -8 =¢,-p;=0, g¢;=p;and g;<p,

or 10° §¢ —§¥ =p, —p;=0, p,=p, and p;=p,

or 11° S - §P =g, - ¢, =0, ¢;=q,

or 12° §P ~ 8 =p, — g, =0, pr =g, and p < gy

or 13° §1V - SO =g, + g, — (px +p;) =0,
Px=4qrxand p,=g;

orR 14° SV - §P =g, —p;=0, g, =p; and q, <p;

(AS)

(A6)

(from A1, A2', AS, A6)
(from A1, A3’, AS, A6)
(from A1, A4’ A5, A6)

(from A2, Al', AS, A6)
(from A2, A2', AS, A6)
(from A2, A3’, AS, A6)
(from A2, A4’, AS, A6)
(from A3, Al’, AS, A6)
(from A3, A2', AS, A6)
(from A3, A3', AS, A6)
(from A3, A4', A5, A6)
(from A4, Al’, AS, A6)

(from A4, A2', A5, A6)
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or 15° SV~ §P =g, —p, =0, g;=p, (from A4, A3', A5, A6)
or 16° S —SW=2_2=0,

From the above list it can be noticed that for all possible situations S; — S, =0,
and hence the ‘mean truth’ in the set {4, > B }i- is greater than that in the set
{d ;= B:}i-1. In the same way inequality S, — S, =0 can be proved for j > k.

Since an optional permutation of the set B can be represented as a series of
permutations of B’ type, where only one pair of elements has been changed and
each of these pairs preserves the inequality S, — S, =0 (Gavett and Plyter [2]), the
theorem of ‘the maximum mean truth’ is true.
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